

Test Method Working Group

- Background / Issues
- Overview of Test Methods
- Results
- Next Steps
- Conclusions
- Recommendations

Background

Lack of correlation between the two methods

- ISO 8178 used for verification and EPA certification
- Method 5/100 used for permitting and compliance

Variations in results between methods may

- Impact product verification
- Source compliance evaluations

3

Industry / ARB / District Workgroup
For Stationary Diesel Engine PM Test Methods

Issues

CARB Method 5 Issues

- Potential method bias and artifact formation (primarily with impinger catch)
- Controlled emissions levels may be below detection limit
- Expensive and difficult to perform in field

ISO 8178 Issues

- Limited field availability
- Expensive to perform in field
- No ambient temperature condensable PM component

Test Method Comparison

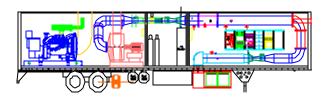
- Method comparison tests on six engines
 - Direct comparisons CARB M5 / ISO 8178
 - Testing at 50%, 75% and 100% loads (D1 cycle)
 - Triplicate samples for each load
- Sample characterization-selected M5 tests
- PM minidilution testing in selected engine tests

5

Stationary Diesel Engine PM Test Method Comparison

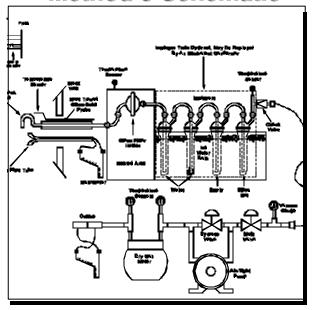
Field Testing

Make/Model	Emission Controls	Description 100 % load	Fuel Sulfur (ppm)
Detroit Diesel 8V-92 1991 (Bug 2)	Uncontrolled	2 Stroke 469 Hp	374 ppm
Cat 3406B 1991 (Bug 3)	Uncontrolled	4 Stroke 422 Hp	90 ppm
Detroit Diesel Series 60 1999 (12.7I) (Bug 6)	Uncontrolled	4 Stroke 402 Hp	144 ppm
Cat 3406 C 2000 (Bug 13)	Uncontrolled	4 Stroke	CARB
Cat 3406C 2000 (Bug 13)	Passive DPF	4 Stroke	ULSD (<15ppm)
Detroit Diesel Pre 87 (Bug 14)	DOC Fuel Additive	2 Stroke	ULSD


Test Methods Overview

CARB Method 5	ISO 8178	
Standard Stationary Engine Test Method	Standard Method for Certification and Verification	
Raw Exhaust	Diluted	
Filter 248 <u>+</u> 25 °F (120 <u>+</u> 14 °C) Impinger (~60 °F)	Filter Below 125°F (52 °C) No Impinger	
Field Available	Laboratory Availability Limited Field Availability	
Method does not define test loads or speeds	Method defines engine test loads and speeds	

7

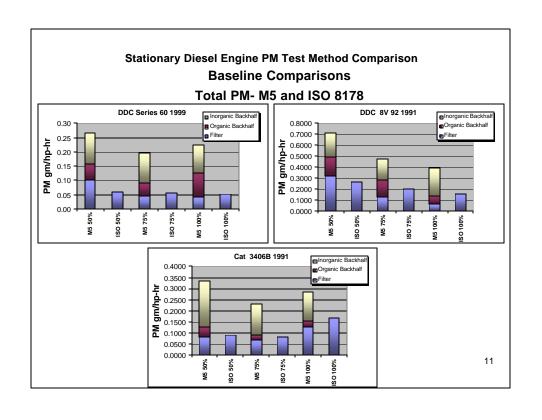

CE-CERT's HDD Mobile Lab

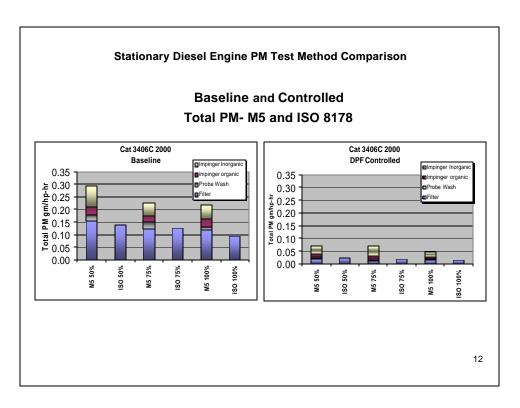
CVS Full-Flow Dilution Emission Testing

Method 5 Schematic

9

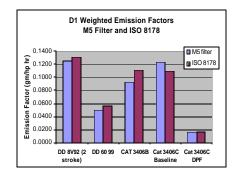
Stationary Diesel Engine PM Test Method Comparison

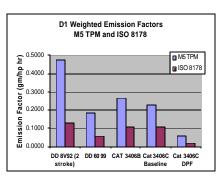

D1 Cycle Weighted Emission Factors


Mode i	1	2	3
Load	100%	75%	50%
Weighting factor	0.3	0.5	0.2

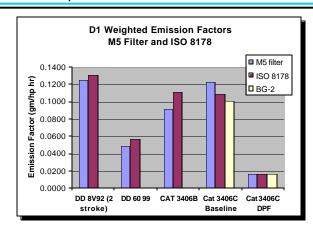
D1 E_f =
$$0.3(PM_{100\%}) + 0.5(PM_{75\%}) + 0.2(PM_{50\%})$$

 $0.3(Hp_{100\%}) + 0.5(Hp_{75\%}) + 0.2(Hp_{50\%})$


Where:


PM is particulate mass per time at given mode in gm/hr Hp is load at given mode

D2 Weighted PM Emission Factor Comparisons M5 and ISO 8178



13

Stationary Diesel Engine PM Test Method Comparison

D2 Weighted PM Emission Factor Comparisons M5, ISO 8178 and Minidilution

Conclusions

- Good Agreement Between CARB M5 Filterable, ISO 8178 Full-Flow & Minidilution
 - ◆ PM
 - Control Efficiency-% Reductions
- CARB M5 total PM 2 to 4 times higher than ISO 8178
- Control Efficiency lower with CARB M5 Total PM

15

Stationary Diesel Engine PM Test Method Comparison

Next Steps

- Meet with Test Method Working Group
- Present Final Recommendations to Key Stakeholders
- Incorporate into Proposed ATCM